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Note 

Automatic Mesh-Point Clustering Near a, Boundary in Grid Generation 
with Elliptic Partial Differential Equations 

In finite difference techniques, one practical way of treating boundary data that are 
specified along an arbitrary curve is to map the boundary curve onto a grid coordinate 
line. Various schemes are available to achieve such mappings, including conformal 
mapping [l, 21, shearing. transforms, algebraic schemes [3], and elliptic partial 
differential equations that satisfy a maximum principle [4-93. Of these, the elliptic 
equation technique appears the most flexible for generating well-ordered finite differ- 
ence grids about arbitrary two- and three-dimensional surfaces. 

Elliptic partial differential equations can be used to generate a smooth grid that 
permits a one-to-one mapping so that mesh lines of the same family do not cross. 
However, the grid so generated is not always satisfactory in the sense that points 
may not be clustered to where they are needed, or mesh lines of the opposite family 
may intersect at highly acute angles. To correct this deficiency, various forcing or 
source terms are used that are either compatible with the maximum principle or that 
are so controlled locally that mesh lines cannot intersect. In particular, Thompson 
et al. [9] have proposed as governing equations 

where the forcing terms are defined as 
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In the transformed space, these equations are written as 

~EC - 2/3%n + YX,, = -JV% + Qx,>, 
~YEP - @Y~Y,, + YY,, = -J’(Py, + QY,), 

(2) 

where J is the transform Jacobian J = +y, - x,,y, and 

01 = xna + Yn2, B = x&l + YEY, 9 y = xc2 + yea- 

The difficulty with the above forcing terms is that no automatic way has been 
available to choose the coefficients of P and Q for a desired clustering, although 
various approximate techniques have been developed [8, 91. For the most part, the 
P and Q terms are selected to achieve two main effects: (1) to cluster points to a 
boundary, and (2) to force grid lines to intersect the boundary in a nearly normal 
fashion. The purpose of this note is to show that these two effects can be achieved 
automatically for smooth boundary curves by ‘adding boundary relations 
governing equations. 

x. y SPECIFIED 

to the 

FIG. 1. Schematic of grid showing terminology. 

The present approach restricts the application of the forcing terms to the inner 
boundary (7 = vl) of Fig. 1, which simphfies the governing equations to 

%c - 2/3+, + yx,, = -J2(Ple-a(n-s+cc + Qle-b(n-nl)xn), 

ayEs - 2/36y,, + yy,,, = -J2(Ple-o(n-n1)yt + Qlt+-*~)yn), (3 

where PI = P(f, vI), Q, = Q(5, vl), and a and b are specified positive constants. 
In the notation of Fig. 1, the first condition that we want to satisfy simply states 

that we want to control the spacing between the vl (i.e., boundary) coordinate line 
and the adjacent qe coordinate line. The elliptic governing equations are relied upon 
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to maintain continuity or smoothness between the lines r], , r), , r], ,... . That is, ifs is 
the distance along a 5 = constant coordinate, we want to specify ds at the boundary 
q = q, . Now 

and in the limit 

ds = [(dQ + (dy)z]“2 

=’ [(xc 4 + xn &Y + (ye 65 + Y,, dq)all’r. 

Or, because 6 is constant along the q-coordinate, 

k = k,)” + Wall’a 4 L-const . (5) 

.To enforce the second condition that grid lines intersect the body in a nearly normal 
fashion, we use the general relation 

V( * vq = 1 V[ 1 1 vq 1 co9 8, (6) 

where 8 equal to 742 yields orthogonality. Using the transform relations i& = y,,/J, 
etc., we can rewrite Eq. (6) as 

x&J + y,y, = --lx,” + vn2xxca + Yo2)P” cos 0. (7) 

Along the 7 = r), boundary, x and y are specified so all derivatives in 5 are known 
(i.e., x6, yr, xH , etc., are given) and are assumed continuous. Relations (5) and (7) 
determine x,, and yn as well 

x, = s,(-X6 cos 8 - ~6 sin @/he + YW, 

yn = s,(-y, cos 6 + x( sin 8)/(xea + y#l*, 

@a) 

0-W 

where 8 .and s,, = (ds/dq) Ic are specified functions of 5 and the sign conventions 
were chosen for 6 positive clockwise and for 7 positive radially outward as shown in 
Fig. 1. The cross-derivative terms along the boundary are also known once x,, and ys 
are known as functions of 1. Thus at the 7 = q1 boundary all of the terms in Eq. (3) 
are known except for PI , Q, , x,,, , and y,, . However, x and y are known on the 
boundary, so x,, and y,, on the boundary are determined from the simultaneous 
solution of Eqs. (3) for x and y in the interior field. Therefore, evaluation of Eqs. (3) 
on the boundary yields two independent equations for finding PI and QI 

Pl = J-YY& - x32) In-n1 9 

Ql = J-Y-Y& + -@a) Ll 3 

(94 

CW 
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where 
R, = --J-2(c+c - 2/3x,, + YX,,) /ml , 

R2 = ---“(a~,, - WYY,, + 3/y,,) L,=n1, 

and where Eq. (9) uses a simplification of Eq. (3) insofar as v = qI so 

e -ah-n,) = e --b(wl,,) = 1 

Simple relaxation routines have been used to solve Eqs. (3) and (9). Successive line 
overrelaxation (SLOR),is used to solve Eq. (3) over the exterior field where the left- 
hand side terms are all centrally differenced. Because the forcing term coefficients 
PI and Q, can be quite large, the derivatives xc, x, , yr, and y,, of the forcing terms 
can cause instability if they are centrally differenced (see, for example, [lo] for related 
analysis). Consequently, the usual trick [lO-121 of backward or forward differencing 
of these terms is used, i.e., if PI is positive, xE is approximated with (x~+~ - x&It, 
while if PI is negative, xc is approximated with (xj - x+.r)/A[, etc. Along the surface 

X-V = (-7x1 + 8x2 - ~2)/(2~~~) - 3x, IA&, WW 

Y tin = (-7~1 + 8~2 - y2Y(2~~2) - 3yn II/~ (lob) 

where xl, yl, x, I1 , and y, II are specified. At 77 = T,I~ , PI and Q, are updated after 
each SLOR sweep of the field from 

pk+l) = p?) + co&-‘(y,,R, - x,R~)(~+‘) - P,‘“‘],, (114 
Qp+l) = Qk’ + qW1(-ycR, + ~$2) 

(*+I) _ Qp’], 
Ulb) 

where n is the iteration level. As in. [lo], where similar boundary .conditions are 

a b 

FIG. 2. Unclustered grid about highly cambered airfoil. (a) Grid detail about airfoil (outer 
boundary not shown). (b) Grid detail at trailing edge. 
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imposed, wP and wo are very small (wP , wQ = 0.02 ---+ 0.06). Also, even for very small 
wp and wo the corrections predicted by Eq. (11) can be too large during the early 
stages of the relaxation scheme if a poor guess is used, so the change in PI and Q1 is 
limited to a small percentage of‘their previous values. 

Our automatic clustering technique has been successfully used to generate various 
airfoil grids. For example, Fig. 2 shows the grid generated with P, and Q, = 0 about 
a highly cambered airfoil whose basic thickness distribution is a 12 to 1 ellipse. The 
grid spacing, on the lower surface is clearly inadequate, especially for viscous flow 
calculations. Figure 3 shows a grid where orthogonality is imposed and a constant 
value ‘of ds = 0.005 was specified along the entire airfoil. In this case, the chord of 
the airfoil is 1 (i.e., the length in x is 1); so ds = 0.005 means that ds is approximately 
equal to l/200 of the chord. Values for ds as small as 0.00001, which are needed for 
high Reynolds number viscous flow calculations, are just as easy to compute, but the 
details are lost in a plot such as Fig. 3 because the inner lines blur together. We 
remark that the ds grid spacing that we impose is not exactly equal to the computed 
grid spacing ds because the differential relations are exact only in the limit. However, 
the closeness, which is more than adequate, improves as ds is refined. Comparisons 
of Figs. 2b and 3b clearly illustrate the effect of imposing orthogonality at the trailing 
edge. 

a b 

FIG. 3. Clustered grid with orthogonality imposed at airfoil surface using exponential coefficients 
of a = b = 1. (a) Grid detail about airfoil. (b) Grid detail at trailing edge showing surface orthogon- 
ality and uniform clustering. 

In closing, we remark that, if a poor initial guess of PI and Q, is used, some 400 to 
800 iterations of the relaxation algorithm are needed to generate a grid such as that 
in Fig. 3. Thus, a more efficient relaxation algorithm for the combined Eqs. (3) and (9) 
will be needed for many grid generation applications. As obvious extensions of this 
procedure, we note that additional forcing terms can be added at the other boundary 
surfaces (and indeed have already been added in one-dimensional applications). 
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